¹⁹F NMR Chemical Shifts and the Microstructure of Fluoro Polymers

Alan E. Tonelli,* Frederic C. Schilling, and Rudolf E. Cais

Bell Laboratories, Murray Hill, New Jersey 07974. Received September 15, 1981

ABSTRACT: Chemical shifts observed for the various fluorine atoms in the ^{19}F NMR spectra of poly(vinylidene fluoride), poly(vinyl fluoride), poly(fluoromethylene), and poly(trifluoroethylene) are calculated as functions of stereosequence and defect structure. This is accomplished by assuming a shielding effect for a fluorine atom in a gauche arrangement with another fluorine or carbon atom separated by three bonds (γ substituent) relative to their trans arrangement. Calculation of bond conformation probabilities in the various fluoro polymer stereosequences and defect structures permits the prediction of ^{19}F NMR chemical shifts. This approach is successfully applied to elucidate the microstructures of the four fluoro polymers under study. The shielding γ effects found for the ^{19}F nuclei in these fluoro polymers are several-fold greater than the γ effects operating on their ^{13}C nuclei and on the carbon atoms in non-fluorine-containing polymers.

Introduction

 $^{13}\mathrm{C}$ NMR spectra of vinyl homo- and copolymers can be predicted from analysis of the numbers and kinds of γ interactions involving each carbon atom type in the polymer. Each nonhydrogen γ substituent in a three-bond gauche arrangement (see Figure 1) with a given carbon atom produces an upfield chemical shift of that carbon resonance relative to their trans arrangement. Polymer chain conformational characteristics, as manifested by calculated bond rotation probabilities, can be utilized to evaluate the frequency with which such γ gauche interactions occur.

The sensitivity of vinyl homo- and copolymer 13 C chemical shifts to stereosequence and comonomer sequence results from the dependence of bond rotation probabilities on the same microstructural features. A dispersion of 13 C chemical shifts reflecting the different possible microstructures found along the vinyl polymer chain is produced by the γ gauche effects. The magnitudes of the upfield γ effects and their frequencies of occurrence, as obtained from the bond rotation probabilities, constitute the only information needed to calculate the effects of polymer microstructure on the observed 13 C NMR chemical shifts.

The $^{13}\mathrm{C}$ NMR chemical shifts observed in a wide variety of vinyl homo- and copolymers have been successfully predicted following the γ -effect approach. $^{2-9}$ Recently, 10 we extended the γ -effect method to the calculation of the $^{13}\mathrm{C}$ NMR chemical shifts exhibited by the fluoro polymers poly(vinylidene fluoride) (PVF₂), poly(vinyl fluoride) (PVF), poly(fluoromethylene) (PFM), and poly(trifluoroethylene) (PF₃E). Successful prediction of the $^{13}\mathrm{C}$ NMR chemical shifts observed for these fluoro polymers served to confirm their conformational characteristics as embodied in the rotational isomeric state (RIS) models recently developed 11,12 for each by one of us.

The aim of the present investigation is to determine whether or not the $^{19}\mathrm{F}$ NMR chemical shifts observed for these fluoro polymers can be understood in terms of γ effects similar in nature to those which apparently govern their $^{13}\mathrm{C}$ NMR chemical shifts. 10 We seek to learn if the microstructurally sensitive $^{19}\mathrm{F}$ NMR chemical shifts exhibited by fluoro polymers can be predicted from knowledge of their conformational characteristics and the magnitudes of their possible γ gauche interactions.

Experimental Section

Materials. The details of the synthesis of the PFM employed in this study have been previously reported.¹³ PF₃E was synthesized at 0 °C by the polymerization of bulk monomer in a sealed glass ampule with trichloroacetyl peroxide initiator. Regionegular PF₃E was obtained by reductive dechlorination of poly(1-chloro-1,2,3-trifluoroethene) (Kel-F) with tributyltin hydride.

Complete details of these procedures will be published separately.¹⁴ PVF was a commercial sample purchased from Aldrich Chemical Co. Two samples of PVF₂ were employed: Kynar 821, a product of Penwalt Corp. (see Figure 3a), and a commercial product of Kureha Chemical Industry Co. (see Figure 3b).

¹⁹F NMR Measurements. A Bruker WH-90 spectrometer was used to record the 84.66-MHz ¹⁹F NMR spectra of PFM and PVF₂. The 188.22-MHz ¹⁹F NMR spectra of PVF, PVF₂, and PF₃E were recorded on a Varian XL-200 spectrometer. The experimental conditions for each polymer regarding solvent, sample concentration (% (w/v)), observation temperature (°C), number of accumulations, 90° pulse width (μ s), pulse delay time (s), spectral window (kHz), and memory size are as follows: PFM—dioxane- d_8 , 10, 70, 1236, 3.4, 3.0, 4, 8K; PF₃E—acetone- d_8 , 10, 20, 200, 9.0, 3.7, 24, 32K; PVF—Me₂SO- d_8 , 11, 100, 200, 8.0, 5.0, 8, 32K; PVF₂ (188.22 MHz)—DMF- d_7 , 11, 21, 150, 8.0, 2.0, 8, 32K; PVF₂ (84.66 MHz)—DMF- d_7 , 20, 28, 300, 4.0, 4.0, 3, 16K.

All spectra except that of PVF_2 at 84.66 MHz were recorded under conditions of broad-band proton decoupling. C_6F_6 (163 ppm vs. $CFCl_3$) was employed as an internal reference except in the case of PFM, where no reference was used. For the PVF and PVF_2 samples, maximum fluorine T_1 values were determined. Delay times greater than $5T_{1\,\text{max}}$ were used in measuring defect concentrations in these materials.

Calculation of ¹⁹F NMR Chemical Shifts

Matrix methods¹⁵ are used to obtain bond rotation probabilities from the RIS models recently developed^{11,12} for each of the fluoro polymers under investigation. The numbers of F---F and F---C γ gauche interactions ($\gamma_{F,F}$ and $\gamma_{F,C}$) are obtained from the calculated bond rotation probabilities. Comparison of the relative ¹⁹F NMR chemical shifts observed in these fluoro polymers with those calculated through adjustment of $\gamma_{F,F}$ and $\gamma_{F,C}$ to achieve closest agreement serves to determine their magnitudes.

Having derived $\gamma_{F,F}$ and $\gamma_{F,C}$ from a comparison of the observed and calculated ¹⁹F NMR chemical shifts, we compare the magnitudes of the γ effects derived from each of the fluoro polymers to test their consistency. The effects of stereosequence and structural defects are considered in the calculation of ¹⁹F chemical shifts for each of the fluoro polymers.

¹⁹F NMR Chemical Shifts for Poly(vinylidene fluoride). The ¹⁹F NMR spectrum of PVF₂ free of structural defects should contain a single resonance due to the absence of asymmetric centers. Occasional head-to-head:tail-to-tail (H–H:T–T) addition of monomer units (see Figure 2) does produce an asymmetric environment and should result in chemical shifts for the fluorine atoms in the immediate vicinity of the H–H:T–T defect which are not eqivalent to the more abundant fluorines in the head-to-tail (H–T) portions of the PVF₂ chains. ¹⁶ The ¹⁹F NMR spectrum of PVF₂ measured at 84.6 MHz and presented in Figure 3a clearly manifests the nonequiva-

(a)
$$CH_{2} \longrightarrow CH_{2} \longrightarrow CH_{2}$$

Figure 1. (a) Portion of a paraffinic hydrocarbon chain in the all-trans, planar-zigzag conformation. (b) Newman projection along bond 2 in (a) illustrating the γ effect.

Figure 2. Schematic drawings of portions of PVF₂, PVF, PFM, and PF₃E chains illustrating H-H:T-T defect and stereosequence microstructures.

lence of the abundant H–T and rarer H–H:T–T fluorine chemical shifts. H–T fluorines resonate at 91.6 ppm (relative to CFCl₃) while H–H:T–T defect peaks are observed at 3.2 (4), 22.0 (2), and 24.0 (3) ppm upfield from the H–T resonance.

We write expressions for the relative ¹⁹F NMR chemical shifts (ν) of H–T and H–H:T–T fluorines in terms of γ effects $(\gamma_{F,F}$ and $\gamma_{F,C})$ and the bond rotation probabilities (P) which determine the frequences of γ gauche effects. From Figure 2 we obtain

$$\begin{split} \nu_{\mathrm{F}}^{\mathrm{H-T}} &= (1 + P_{\mathrm{t}}) \gamma_{\mathrm{F,C}} \\ \nu_{\mathrm{F}}^2 &= (1 + 0.5 P_{\mathrm{t,d}} + 0.5 P_{\mathrm{t,e}}) \gamma_{\mathrm{F,C}} + (1.5 - 0.5 P_{\mathrm{t,e}}) \gamma_{\mathrm{F,F}} \\ \nu_{\mathrm{F}}^3 &= (1 + 0.5 P_{\mathrm{t,e}} + 0.5 P_{\mathrm{t,f}}) \gamma_{\mathrm{F,C}} + (1.5 - 0.5 P_{\mathrm{t,e}}) \gamma_{\mathrm{F,F}} \\ \nu_{\mathrm{F}}^4 &= (1 + 0.5 P_{\mathrm{t,h}} + 0.5 P_{\mathrm{t,i}}) \gamma_{\mathrm{F,C}} \end{split}$$

Bond rotation probabilities $P_{\rm t}$, $P_{\rm t,d}$, $P_{\rm t,e}$, $P_{\rm t,f}$, $P_{\rm t,h}$, and $P_{\rm t,i}$, where t signifies the trans (0°) conformation, are evaluated from the RIS model developed previously by one of us¹¹ for H–T and H–H:T–T PVF₂.

From the expressions written for $\nu_{\rm F}$ and the calculated bond rotation probabilities, it is apparent that $\nu_{\rm F}^{\rm H-T}$ and $\nu_{\rm F}^{\rm 4}$ are most similar. Hence, $\nu_{\rm F}^{\rm 4}-\nu_{\rm F}^{\rm H-T}=3.2$ ppm, which leads directly to $\gamma_{\rm F,C}=30$ ppm upfield, or shielding. By elimination, $|\nu_{\rm F}^{\rm 2}-\nu_{\rm F}^{\rm 3}|=2.0$ ppm, which yields $\gamma_{\rm F,F}=15$ ppm upfield, or shielding. Substitution of $\gamma_{\rm F,F}=15$ ppm and $\gamma_{\rm F,C}=30$ ppm into the expressions for $\nu_{\rm F}$ leads to calculated relative ¹⁹F chemical shifts which compare favorably with the observed ¹⁹F resonances as shown in Figure 3c.

At 188 MHz four additional defect peaks (1, 5, 6, and 7) appear in the ¹⁹F NMR spectrum of PVF₂ (see Figure 3b). These additional peaks were also observed by Fer-

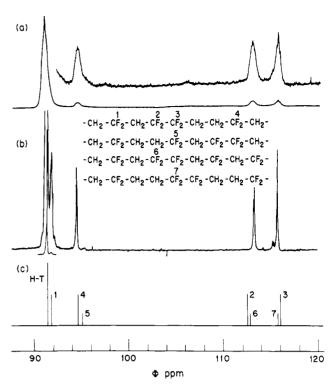


Figure 3. Observed and calculated ¹⁹F NMR spectra of PVF₂: (a) measured at 84.6 MHz; (b) measured at 188.2 MHz; (c) calculated. Vertical expansion in (a) is ×8, in (b) ×40.

guson and Brame,¹⁷ who assigned them to the defect structures drawn in Figure 3b based on α -, β -, and γ -substituent effects derived from the CF₂ resonances observed in various saturated linear chains. In addition to ν_F^{H-T} , ν_F^2 , ν_F^3 , and ν_F^4 , ¹⁹F chemical shifts were also calculated for the defect CF₂ fluorines 1, 5, 6, and 7. ¹⁹F γ effects (γ_{F,CH_2} , γ_{F,CF_2} , and $\gamma_{F,F}$) were varied and least-squares fitted to produce the best agreement between observed and calculated chemical shifts. Good agreement was achieved for $\gamma_{F,CH_2} = \gamma_{F,CF_2} = 25-30$ ppm and $\gamma_{F,F} = 15$ ppm (see Figure 3c), confirming the assignments proposed by Ferguson and Brame¹⁷ and the γ effects derived from the defect resonances 2, 3, and 4 observed at the lower magnetic field. In our initial calculations of the ¹⁹F NMR chemical shifts for the remaining three fluoro polymers, $\gamma_{F,C} = 30$ ppm and $\gamma_{F,F} = 15$ ppm upfield will be assumed.

 $\gamma_{\rm F,C}$ = 30 ppm and $\gamma_{\rm F,F}$ = 15 ppm upfield will be assumed. In our considerations of possible defect structures in PVF₂ we have neglected the possibility of chain branching. This class of defect structures will be investigated in future work.

¹⁹F NMR Chemical Shifts for Poly(fluoromethylene). The monomer units (cis- or trans-1,2-difluoroethylene) of PFM¹³ preclude the differentiation between their H-T and H-H:T-T addition and result in the attachment of a single fluorine atom to each backbone carbon atom. Stereosequence, aside from the possibility of branching, remains as the single structural feature of importance in characterizing the microstructure of PFM.

Because each backbone carbon is asymmetric, i.e., asymmetric centers are separated by a single C-C bond in PFM (see Figure 2) rather than two C-C bonds as in PVF and PF₃E, we have considered the effects of stereosequence up to the nonad level, resulting in the estimation of bond rotation probabilities for 136 different stereoisomers. Our recently derived RIS model for PFM was used to calculate the bond rotation probabilities for all nonad stereosequences.

In Figure 4 the observed ¹⁹F NMR spectrum of PFM¹³ is compared to the calculated ¹⁹F chemical shifts obtained

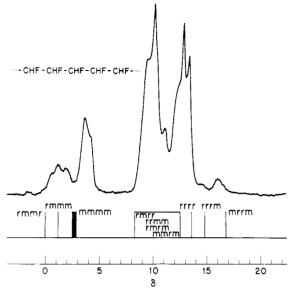


Figure 4. Observed (84.6 MHz) and calculated ¹⁹F NMR spectra of PFM.

using $\gamma_{\rm F,C}$ = 20 ppm and $\gamma_{\rm F,F}$ = 10 ppm upfield, or shielding. Only ¹⁹F chemical shifts calculated for pentads by averaging over all PFM nonads are presented, with the nonad sensitivity of a given ¹⁹F chemical shift indicated by its width.

There is general agreement between calculated and observed resonances, indicating that conformationally sensitive γ effects are the source of the stereosequence-dependent dispersion of ¹⁹F chemical shifts in PFM. Adoption of Bernoullian polymerization statistics permits a faithful simulation¹³ of the observed spectrum (see Figure 4) and clearly indicates that the sample of PFM investigated here is predominantly atactic, with $P_{\rm m} = 0.42$.

¹⁹F NMR Chemical Shifts for Poly(vinyl fluoride). Characterization of the microstructure of PVF requires knowledge of stereosequence and H-H:T-T defect content. Bond rotation probabilities are obtained from a recently developed¹² RIS model of PVF which incorporates the effects of both H-H:T-T defect structures and stereosequence. In H-T portions of PVF, stereosequence effects to the pentad level are considered, while all possible octad stereosequences encompassing a single H-H:T-T defect (see Figure 2) were treated.

A comparison of the observed ¹⁹F NMR spectrum of PVF with the ¹⁹F chemical shifts calculated for γ_{F,CH_2} = $\gamma_{\rm F,CHF}$ = 35 ppm and $\gamma_{\rm F,F}$ = 25 ppm is presented in Figure 5. The agreement is excellent and permits a detailed assignment of the observed peaks. The observed effects of stereosequence and H-H:T-T defects are both reproduced by the calculated ¹⁹F NMR chemical shifts.

Weigert¹⁸ has presented peak assignments for the ¹⁹F NMR spectrum of PVF based on analogies drawn from the methyl carbon region of the ¹³C NMR spectrum of atactic polypropylene¹⁹ and the ¹⁹F NMR spectra of a series of 2-halo-3-fluorobutanes.²⁰ Although his assignments for the H-T 19F resonances (mm, mr, and rr in order with increasing magnetic field) agree with ours ($P_{\rm m}$ = 0.43), there are differences between the two assignments for the H-H:T-T peaks.

Both assignments agree that H-H fluorines B and C (see Figure 5) in the racemic (r) configuration should resonate upfield from their meso (m) arrangement, which is also the observed and calculated order in PFM (see Figure 4). However, Weigert assigns the defect peaks labeled 1, 2, 3, 4, 5, and 6 to defect fluorines B(mm), C(m), B(rm), B(mr),

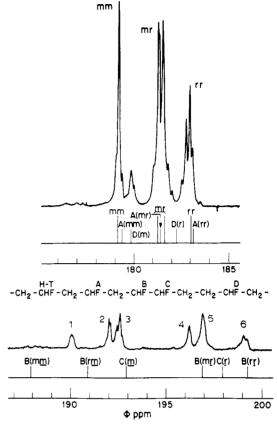


Figure 5. Observed (188.2 MHz) and calculated ¹⁹F NMR spectra

C(r), and B(rr), where the italic r or m denotes the relative configuration of the H-H fluorines B and C (see PFM stereostructure in Figure 2 for r and m configurations). Our calculated ¹⁹F chemical shifts indicate that peaks 1-6 are due to B(mm), B(rm), C(m), B(mr), C(r), and B(rr).

The intensities (I) of H-H B and C resonances should be equal, which according to Weigert's assignments means I(1) + I(3) + I(4) + I(6) should equal I(2) + I(5). However, it is clear that Weigert's assignment gives too much intensity to the H-H fluorine B, while our assignment is consistent with the expected 1:1 intensity ratio for H-H fluorines B and C.

The minor peaks to the high-field side of H-T(mm) and between H-T(mr) and H-T(rr) are assigned to D(m) and D(r) by Weigert, while the ¹⁹F chemical shifts we calculated for A(mm), A(mr), and A(rr) together with D(m) and D(r) closely correspond to these peaks of minor intensity in the H-T portion of the spectrum.

Half the ratio of the intensity of H-H fluorines B and C to the total intensity yields an estimate of 11.6 mol % H-H:T-T addition. Independent ¹³C NMR analysis ¹⁰ of the same PVF sample yields 10.6 mol % of H-H:T-T addition, confirming our ¹⁹F NMR assignments.

¹⁹F NMR Chemical Shifts for Poly(trifluoroethylene). As expected from our discussion of ¹⁹F NMR chemical shifts in PVF, stereosequence and H-H:T-T defect content are also both important features of PF3E microstructure. The calculation of ¹⁹F NMR chemical shifts for PF₃E was conducted in a manner identical with that described for PVF except bond rotation probabilities were obtained from the RIS model¹² appropriate to PF₃E.

A comparison of ¹⁹F NMR chemical shifts calculated from the previously derived¹² RIS model for PF₃E with those observed in the spectrum of regionegular PF₃E (all H-T addition) (see Figure 6) made apparent the failure of this RIS model to yield calculated ¹⁹F chemical shifts

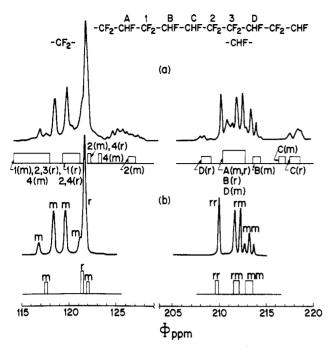


Figure 6. Observed (188.2 MHz) and calculated ¹⁹F NMR spectra of PF₃E: (a) PF₃E containing H-H:T-T defects; (b) regionegular PF₃E.

in agreement with the observed. As an example, in the CHF region the over all spread in the calculated 19 F chemical shifts due to stereosequence effects was ~ 0.5 ppm, while the observed spread (see Figure 6) is close to 4 ppm.

The failure of the RIS model for PF₃E, ¹² as derived from conformational energy estimates, to predict the observed ¹⁹F NMR spectra led us to rederive a RIS model which does correctly predict the observed ¹⁹F NMR chemical shifts. Statistical weights reflecting the probabilities of all possible backbone rotational states were treated as parameters and selected to provide calculated ¹⁹F NMR chemical shifts which agreed with the observed spectra. (Details of the development of the RIS model for PF₃E from the observed ¹⁹F NMR spectra will be presented shortly.²¹)

In Figure 6 we compare the calculated ¹⁹F NMR chemical shifts to the observed spectrum of PF₃E. The agreement is good for both CHF and CF₂ fluorines, with γ effects in the range observed for the other three fluoro polymers treated here; i.e., $\gamma_{\rm F,CHF}=20$ ppm, $\gamma_{\rm F,CF_2}=28$ ppm, and $\gamma_{\rm F,F}=10$ ppm. From the intensity of the most upfield CHF resonances corresponding to T-T fluorine C, we estimate that our PF3E sample has 11.6 mol % H-H:T-T addition. This percent H-H:T-T addition is lower than the ~50% H-H:T-T addition we previously estimated for a commercial sample of PF₃E using ¹³C NMR. ¹⁰ However, as mentioned above, our previously developed RIS model for PF₃E¹² was in error, and the 50% H-H:T-T estimate obtained by ¹³C NMR is probably also wrong. We will shortly reanalyze the ¹³C NMR spectrum of PF₃E using the RIS model developed21 by comparison of calculated and observed ¹⁹F NMR chemical shifts.

The calculated order of resonances for regionegular PF_3E is in good agreement with the experimental assignment. Spin-spin coupling between the CF_2 fluorines (see below) provides an unambigous means for making the stereosequence assignments in regionegular PF_3E .

In Figure 6a the calculated ¹⁹F chemical shift of racemic C(r) T-T CHF fluorine comes upfield from its meso (m) arrangement²² in a manner similar to that observed for

H-H fluorines in PVF and for m and r dyads in PFM. The racemic arrangement of -CHFCHF- units is clearly favored over the meso configuration for the PF₃E studied here.

Yagi²³ attempted to deduce microstructural information

from the 56.5-MHz ¹⁹F NMR spectrum of PF₃E. However, the poor resolution of his spectrum (CF₂ region) resulted in the absence of resonances below 119 ppm and above 126 ppm, which are clearly seen in the CF₂ region of our spectrum obtained at 188.22 MHz. The microstructural conclusions drawn by Yagi concerning PF3E are almost certainly in error. This latter judgment receives support from the observation that the ¹⁹F chemical shifts calculated for the fluorine nuclei belonging to CF₂ groups are inequivalent if either or both the nearest or next-nearest neighbors are asymmetric CHF groups. As an example, in the sequence $-CF_2-CHF^{-1}_2-CF_2^{-2}$ CHF $-CF_2$ —the fluorines belonging to the central CF_2 group are in a gauche arrangement with the terminal CF_2 carbons, with probabilities $(2.0 - P_{1,g^-} - P_{2,g^+})$ and $(2.0 - P_{1,g^+} - P_{2,g^-})$. Since $P_{1 \text{ or } 2,g^+} \neq P_{1 \text{ or } 2,g^-}$ in a meso (m) dyad, the two fluorine nuclei will resonate at different frequencies even though they belong to the same symmetric CF₂ group and are part of a H-T PF₃E chain segment. The clearly separated resonances predicted for the CF2 fluorines when at least one of their neighbors is an asymmetric CHF group can be seen in Figure 6, where the chemical shifts calculated for the H-T and H-H:T-T (1, 2, 3, and 4) CF₂ fluorines are separated into distinct regions whose widths reflect the sensitivity to stereosequence. Yagi's analysis of the CF₂ region of his PF₃E spectrum did not take into account the inequivalence of fluorines belonging to the same CF₂

In addition, the magnetic inequivalence of CF_2 fluorines results in long-range spin-spin coupling, producing multiple resonances. This is seen clearly in the spectrum of regioregular PF_3E (Figure 6b), where in the CF_2 region the two inequivalent CF_2 fluorines residing in a meso (m) dyad are further split into an AB quartet. On the other hand, the CF_2 fluorines in racemic (r) dyads are equivalent and yield a single resonance. Yagi did not account for the multiple resonances produced by the spin-spin coupling of inequivalent CF_2 if nuclei.

In the CHF region of the 19 F NMR spectrum of PF₃E (see Figure 6a), there appears to be a clear separation of the "normal" H–T and "defect" T–T peaks, thereby providing an unambiguous analaysis of PF₃E microstructure. Judging from the CF₂ region of Yagi's 19 F NMR spectrum, we believe he most likely would not have resolved the meso (m) and racemic (r) T–T fluorine peaks for C, seen clearly in the CHF region of our PF₃E spectrum in Figure 6a.

Discussion and Conclusions

Our ability to correctly predict the $^{19}\mathrm{F}$ chemical shifts as a function of microstructure (stereosequence and/or defect content) in the four fluoro polymers investigated indicates that, like $^{13}\mathrm{C}$ nuclei, 1 $^{19}\mathrm{F}$ chemical shifts are sensitive to their numbers and kinds of γ substituents. The γ effects upon both $^{13}\mathrm{C}$ and $^{19}\mathrm{F}$ nuclei are shielding and produce upfield chemical shifts relative to the unsubstituted nuclei. Apparently, the shielding effect produced by γ substituents requires a gauche arrangement between them and the observed $^{13}\mathrm{C}$ or $^{19}\mathrm{F}$ atom.

This required gauche arrangement is the source of the conformational sensitivity of ¹³C and ¹⁹F chemical shifts, because the local polymer chain conformation is sensitive to stereosequence and defect structures. With the demonstration that ¹⁹F, as well as ¹³C, chemical shifts are

Figure 7. Schematic illustration of 13 C and 19 F γ effects in fluoro polymers.

sensitive to the gauche arrangement of γ substituents, it becomes increasingly important to understand the underlying cause(s) for the shielding γ effects.²⁴

We have demonstrated that with a single consistent set of γ effects ($\gamma_{\rm F,C}$ = 20–35 ppm and $\gamma_{\rm F,F}$ = 10–25 ppm) the microstructurally sensitive ¹⁹F NMR chemical shifts of fluoro polymers can be predicted. Because the method of calculating the ¹⁹F chemical shifts requires evaluation of the number of gauche arrangements between the ¹⁹F nuclei and their γ substituents, as obtained from bond conformation probabilities, it is apparent that the RIS models previously developed for these fluoro polymers, 11,12 with the exception of PF₃E, provide realistic descriptions of their conformational characteristics.

We previously 10 drew a similar conclusion when we were able to successfully account for the ¹³C chemical shifts exhibited by the same fluoro polymers. However, the much larger magnitudes of the γ effects²⁵ on ¹⁹F nuclei (10-35 ppm), compared to ¹³C nuclei (-2 to -5 ppm) (see Figure 7), make the prediction of ¹⁹F chemical shifts a much more sensitive test of fluoro polymers conformational characteristics. It appears that the RIS models^{11,12} developed for PVF₂, PFM, and PVF pass this test.

Our ability to identify the H-H and T-T defect resonances in the ¹⁹F NMR spectra of PVF₂, PVF, and PF₃E enables us to estimate the abundance of such defects. Measurement of the intensities of the defect peaks and comparison to the total intensity of all observable resonances yield the following estimates of H-H:T-T addition

in these fluoro polymers: PVF₂ (Kureha sample, Figure 3b, 3.4%), PVF (11.6%), and PF₃E (11.6%). In the cases of PVF₂ and PVF, these compare favorably with the 3.3% and 10.6% defect contents estimated from our ¹³C NMR analysis 10 of the same fluoro polymer samples.

References and Notes

- (1) Tonelli, A. E.; Schilling, F. C. Acc. Chem. Res. 1981, 14, 233.
- Tonelli, A. E. Macromolecules 1978, 11, 565.
- Tonelli, A. E. Macromolecules 1978, 11, 637
- Tonelli, A. E.; Schilling, F. C.; Starnes, W. H., Jr.; Shepherd, L.; Plitz, I. M. Macromolecules 1979, 12, 78.
- Tonelli, A. E. Macromolecules 1979, 12, 83.
- Tonelli, A. E. Macromolecules 1979, 12, 252. Tonelli, A. E. Macromolecules 1979, 12, 255.
- Schilling, F. C.; Tonelli, A. E. Macromolecules 1980, 13, 270. Tonelli, A. E.; Schilling, F. C. Macromolecules 1981, 14, 74.
- Tonelli, A. E.; Schilling, F. C.; Cais, R. E. Macromolecules
- 1981, *14*, 560.
- (11)Tonelli, A. E. Macromolecules 1976, 9, 547.
- (12) Tonelli, A. E. Macromolecules 1980, 13, 734.
- (13) Cais, R. E. Macromolecules 1980, 13, 806.
- (14) Cais, R. E.; Kometani, J M., in preparation.
 (15) Flory, P. J. "Statistical Mechanics of Chain Molecules"; Wiley-Interscience: New York, 1969; Chapters III and IV.
- (16) Wilson, C. W., III. J. Polym. Sci., Part A 1963, 1, 1305. Wilson, C. W., III; Santee, E. R., Jr. J. Polym. Sci., Part C 1965,
- (17) Ferguson, R. C.; Brame, E. G., Jr. J. Phys. Chem. 1979, 83, 1397.
- (18) Weigert, F. J. Org. Magn. Reson. 1971, 3, 373.
 (19) Johnson, L. F.; Heatley, F.; Bovey, F. A. Macromolecules 1970,
- (20) Olah, G. A.; Bollinger, J. M.; Brinich, J. J. Am. Chem. Soc. 1968, 90, 2587.
- Tonelli, A. E., in preparation. In PFM, PVF, and PF₃E the racemic (r) arrangement of -CHFCHF- fluorines (see Figure 2) is observed to resonate upfield from the meso (m) arrangement, as predicted by the calculated ¹⁹F NMR chemical shifts. Recently, Segre (Segre, A. L., private communication) synthesized and separated the racemic and meso isomers of 2,3-difluorobutane and recorded their ¹⁹F NMR spectra. She finds the fluorine nuclei in the racemic isomer to resonate ca. 3 ppm upfield from the fluorines in the meso isomer. This observation confirms our calculated ¹⁹F NMR chemical shifts for the -CHFCHF- fragments in PFM, PVF, and PF₃E and strengthens our assignment of the upfield peaks to the racemic isomer in each instance.
 (23) Yagi, T. polym. J. 1979, 11, 353.
 (24) Seidman, K.; Maciel, G. E. J. Am. Chem. Soc. 1977, 99, 659.

- γ effects on both ¹³C and ¹⁹F nuclei are shielding and produce upfield shifts. However, by convention ¹³C chemical shifts decrease (Me₄Si scale) and ¹⁹F chemical shifts increase with increasing magnetic field. As a consequence, γ_{CX} are negative and γ_{FX} are positive (see Figure 7).